Bringing energy and the environment into harmony.

HydroAir™
OWC turbine

Next Generation PTO

9th Oct 2014
Safe Harbor Disclosure

The Private Securities Litigation Reform Act of 1995 provides a “safe harbor” for certain forward-looking statements so long as such information is identified as forward-looking and is accompanied by meaningful cautionary statements identifying important factors that could cause actual results to differ materially from those projected in the information.

The use of words such as “may”, “might”, “will”, “should”, “expect”, “plan”, “outlook”, “anticipate”, “believe”, “estimate”, ”appear”, “project”, “intend”, “future”, “potential” or “continue”, and other similar expressions are intended to identify forward-looking statements.

All of these forward-looking statements are based on estimates and assumptions by our management that, although we believe to be reasonable, are inherently uncertain. Forward-looking statements involve risks and uncertainties, including, but not limited to, economic, competitive, governmental and technological factors outside of our control, that may cause our business, industry, strategy or actual results to differ materially from the forward-looking statements.

These risks and uncertainties may include those discussed in the Company’s most recent filings with the Securities and Exchange Commission, and other factors which may not be known to us. Any forward-looking statement speaks only as of its date. We undertake no obligation to publicly update or revise any forward-looking statement, whether as a result of new information, future events or otherwise, except as required by law.

Confidentiality

Any person allowing themselves to directly or indirectly receive the information contained in this presentation agrees that this presentation and all information contained herein and/or in any way distributed to the Receiver with respect to the same (verbal or otherwise) is the confidential and proprietary property of Dresser-Rand Company and is being provided to and received by the Receiver in confidence.

Receiver agrees not to divulge the contents hereof to any third party without the prior written approval of Dresser-Rand’s duly authorized representative.

Receiver shall advise any permitted recipient of the confidential information of the nature of the same and obtain their agreement to be bound to these terms before such confidential information is disclosed to them. Receiver on behalf of its principal, representatives, employees and themselves individually do hereby unconditionally agree to the terms hereof and agree to defend, indemnify, and hold Dresser-Rand harmless from and against any and all damages that result from Receiver’s failure to strictly comply with these terms. Receiver further agrees that failure to comply with these terms will cause Dresser-Rand to suffer irreparable harm. Your decision to remain and receive the information about to be presented to you shall constitute your unconditional acceptance to the foregoing.
Contents

- HydroAir™ Test facility
- Electrical PTO
- Variable Radius Turbine
- Prototype turbine
- DOE Project overview
- Logistic Challenges
- Conclusion
Cranfield HydroAir™ Test-Facility

- Initially commissioned in 2005
- Upgraded in 2010
- Validated CFD methodology
- Test vehicle for control strategy development
Test Facility: How Does it Work?
PWG Test-Facility

- Total swept volume: 16.43 m^3
- Max flow rate of $5.88 \text{ m}^3/\text{s}$
- Monochromatic and polychromatic wave capability
- Enabled control source code to be developed and advanced through a sponsored Eng.D program
Test-rig Upgrade (2010): VRT-1

- Reduce mechanical losses
- Reduce aerodynamic losses
- Test-rig representative of the real system
- Improve accuracy & repeatability of instrumentation measurements
HydroAir™ - Power Take Off System

- An innovative power conversion device for use in Oscillating Water Column (OWC) technology
- The high efficiency device consists of:
 - Advanced air turbine
 - Generator
 - Power electronics
Electrical Equipment

CONVERTER SYSTEM

Machine Bridge

Network Bridge

Filter

Precharge supply short
form only

Control Supplies
1 PH 240V loads
Fan 0.5A
Turbine Brake 1.2A
Anti Con Heater 1.5A
Compressor 6A

36A 3ph
8A 1ph
10A 1ph

415V/3 PH+N
From M1 Power
Switchboard

18 kW
415V
Local Isolator
VRT Development History

- Collaboration with Cranfield University since 2004
- Sponsoring of 5 PhD students
- DTi Project
- BERR Project
- Test facility commissioned 2005
- Patent GB2440344A
- Prototype commissioned 2010
- Ongoing Work
 - CFD optimisation
 - Control strategy

VRT-2
Turbine Developments—VRT

Differences
- Guide-vane twist
- Radial offset
- Number of blades (Rot/GV)
- Turning angle (Rot/GV)
- Hub-Tip ratio
- New blade profiles
- New duct shape
- New duct principles
- New duct shape
- New duct principles

Similarities
- Similar blade profiles
- Similar overall duct shape
- VRT principle
- Similar blade profiles

VRT
- Original VRT (2005-06)
- VRT-1 (07-08)
- VRT-2 (08-09)
- VRT-U (10-present)
Prototype Assembly

Lowering the outer ducting

Fully assembled

Turbine Rotor Assembly
Prototype Installation: Port Kembla
Next Phase: VRT-U:
Funding Opportunity Award

The FOA released by the DOE in the USA has 3 Topics for development

- Topic 2 – Next generation Power Take Off (PTO)

Scope: Proposed projects shall design a PTO sub-system or individual PTO component(s). A prototype of the PTO sub-system or PTO component(s) should be fabricated and tested independent of the system. At a minimum, this prototype will be tested in a laboratory facility under controlled or relevant conditions to validate its ability to achieve the component performance metric(s).

D-R awarded @ 20% cost share on the 16th April 2014
Wave Energy Test Site (WETS) Hawaii

- 2 Test sites identified for deep water applications
- Water depth ~ 70M
- Permit agreed for 2MW
Logistic Challenges

Supply Chain Management (SCM)

- **Power Generation Equipment**
 - Generator
 - VFD
 - Control and Instrumentation Equipment

- **Composite manufacturers**
 - Ducting
 - Rotor Blades
 - Guide-vanes

- **Assembly location**
 - West coast at D-R Chula Vista site (Hawaii Test site location)
 - East coast at D-R Wellsville site (PICO in Azores test site location)
Most Client Alliances in Industry ~ 50

Validation of the Dresser-Rand Value Proposition

Note: Partial List
Conclusion

- Marine renewables business development to provide world-class power generation solutions for a carbon constrained world … Establish a leadership position for environmental solutions in marine energy with O&G customers
- Support for new up and coming technologies requiring Power Take Off systems
- Support mechanisms are still in place to make this an attractive value proposition
- D-R core clients and competitors are showing interest so we will be collaborating with them
- Opportunity to complete the HAT PTO for Hawaii/PICO will be a huge step forward